Engines &
Transmissions

Powered by a pair of Skyactiv Technology petrol engines matched to the Mazda M Hybrid 24v mild-hybrid system, the Mazda CX-30 range features manual and automatic transmissions, plus all-wheel drive and conventional front-wheel drive layouts.

Familiar from the recently launched all-new Mazda3, the 2.0-litre Skyactiv-G engine is exclusively matched to front-wheel drive with a choice of automatic or manual transmission across all five trim levels. Producing 122ps at 6,000rpm and maximum torque of 213Nm at 4,000rpm it features optimised intake port and piston shapes, split fuel injection, a coolant control valve and cylinder deactivation, to deliver higher levels of dynamic performance, fuel economy and environmental friendliness. The Skyactiv-G 2.0-litre adopts the company’s intelligent Mazda M Hybrid system to support greater gains in fuel economy and more driving pleasure.

The Skyactiv-G’s cylinder deactivation system further improves efficiency by shutting down two of the engine’s four cylinders in light-load situations, such as when cruising at a constant speed. Shutting down the two outer cylinders increases the load on the remaining two, causing them to operate in a range of greater efficiency. Airflow intake volume, fuel injection rates and ignition timing are precisely controlled to allow the engine to switch smoothly between two-cylinder and four-cylinder operation and reduce fuel consumption when cruising at constant speeds.

Expected to account for around 60-70 percent of UK sales, the ground-breaking Spark Controlled Compression Ignition (SPCCI) Skyactiv-X petrol engine is also offered across all grades with a choice of transmission. Additionally from Sport Lux upwards, the Skyactiv-X CX-30 is available with Mazda’s latest advanced i-Activ all-wheel drive system.

Thanks to its unique combustion method in which spark plug ignition is used to control compression ignition, the resulting efficiencies mean this 180ps petrol SPCCI engine delivers excellent economy combined with low CO2 emissions and flexible performance. With emissions as low as 105g/km and WLTP combined economy as high as 47.9mpg, the Skyactiv-X engine is the perfect solution for private and fleet customers, offering the ideal alternative to diesel in a segment that has seen demand for diesel powered cars dramatically reduce.

While Mazda is committed to diesel and the development of next-generation clean diesel engines for appropriate sectors, the abilities of Skyactiv-X and diminishing consumer demand for diesel engines in the compact SUV segment mean that in the UK the Mazda CX-30 will be exclusively petrol. One of the principle points of focus in Mazda's long-term technology development strategy, Sustainable Zoom-Zoom 2030, is the need to significantly lower CO2 emissions. And the company is committed to reducing its global average 'Well-to-Wheel' CO2 emissions to 50% of 2010 levels by 2030, and to 90% by 2050.

At Mazda, we believe that multiple solutions are required to effectively lower CO2 emissions from road transport. With two thirds of global electricity production currently relying on the use of fossil fuels, Mazda believes regulations placing the emissions of an electric vehicle (EV) at zero to be disingenuous. Indeed, when converted to a 'Well-to-Wheel' figure, the average CO2 emissions of an EV in some regions can be rather close to those of a conventional vehicle, depending on the energy mix from which the electricity is made.

As the majority of cars will be fully or partially powered by internal combustion engines for many years to come, improvements made to these engines will have a greater effect on the reduction of total emissions, simply because of the number of vehicles that will benefit from them. Accordingly, Mazda has been looking to significantly reduce CO2 emissions from petrol engines based on the analysis of the control factors given by combustion chemistry and physics.

Featuring Spark Controlled Compression Ignition (SPCCI), a Mazda unique combustion method, the Skyactiv-X engine represents the second step in Mazda’s quest to develop a petrol engine with the ideal internal combustion mechanism. Developing controlled compression ignition for petrol engines has long been a goal of engineers. The Skyactiv-X is a ground-breaking new engine, exclusive to Mazda, in which spark plug ignition is used to control compression ignition, resulting in dramatic improvements across a range of important performance areas.

The benefits of a spark-ignition petrol engine-expansiveness at high rpm and cleaner exhaust emissions- have been combined with the improved fuel-economy of a compression-ignition diesel engine – to produce a crossover engine that delivers the best of both worlds. The Skyactiv-X engine is the world’s first production petrol unit to exploit the benefits of compression ignition. Key to its operation is the use of a highly lean, fuel- and emissions-efficient mixture of air and fuel: 2-3 times leaner than in today’s conventional petrol engines. This mixture contains so little fuel that a normal engine with spark plugs cannot fire it.

Mazda already uses uniquely high compression ratios on its current Skyactiv petrol engines to reduce fuel consumption. This lead to the idea of increasing the compression ratio even further and igniting the fuel simply by compression as is the norm in modern diesel engines, this concept has been tried before by several manufacturers with Homogeneous Charge Compression Ignition (HCCI), but none has been able to expand the area of lean compression ignition across a wide range of engine operation.

Mazda’s unique solution to this challenge is Spark Controlled Compression Ignition (SPCCI) which allows the engine to switch seamlessly between conventional combustion and compression ignition by using a spark to trigger both types of combustion in different ways. In SPCCI mode, a split injection process creates separate zones of fuel-air mixture inside the combustion chamber, first, a very lean fuel to air mixture is injected into the combustion chamber during the intake stroke, then a zone of atomised fuel is precisely injected directly around the spark plug during the compression stroke.

Because of the high 16.3:1 compression ratio of Skyactiv petrol technology, the first injection of fuel is on the verge of spontaneously combusting anyway. To ignite the mixture at the right time, the small injection of atomised fuel directly around the spark plug builds a richer core. When the spark fires, it ignites the local zone of fuel and air. This increases pressure and temperature in the combustion chamber to the point where the main volume of the lean mixture rapidly combusts.

Improving fuel economy, SPCCI works in almost all ranges of engine operation except during cold starts, initial warm-up phases and at very high load. Under these circumstances, the engine seamlessly switches to normal operation, igniting a conventional ‘stoichiometric’ fuel and air mixture of 14.7:1. Because SPCCI is so stable whereas HCCI wasn’t, it can be used more frequently in the engine’s operating range, which means the engine can run for a higher percentage of the time in a very efficient mode. As a result, torque output is approximately 10% greater than that of the old Skyactiv-G 165ps engine in the outgoing Mazda3.

In both the Skyactiv-X and Skyactiv-G CX-30 Mazda’s petrol engines are matched the company's intelligent Mazda M Hybrid system. Compact and efficient, the mild hybrid system features a belt-driven integrated starter generator (ISG) and a 24V lithium-ion battery. It supports greater gains in fuel economy by recycling energy recovered during deceleration and powering the ISG, functioning as an electric motor, to assist the engine.

The ISG converts the recovered kinetic energy into electric power and stores it in the lithium-ion battery. The system then uses a DC-DC converter to transform that voltage to the appropriate level, and supplies it to the car’s electrical equipment. Adopting the belt-driven ISG also delivers a refined drive feel by enabling the system to provide drive assist and helping the engine restart more quickly and quietly after shutting down for idling stop. The lithium-ion battery is mounted between the wheels, minimising its impact on interior space, while helping to optimise weight distribution and contributing to collision safety.

The Mazda M Hybrid system's brake-by-wire technology smoothly and dynamically blends electric and friction brake forces to maximise both stopping power and energy recuperation efficiency. Not only does it offer short braking distances with high levels of vehicle stability, but also - through the transformation of electric brake force into useable energy - further reductions in CO2 emissions. The electronically controlled brake-by-wire system is also designed to revert to entirely mechanical friction braking as a fail-safe in the event of an electrical system failure.

From Sport Lux onwards Skyactiv-X CX-30s can be matched to Mazda’s i-Activ AWD system, which thanks to newly developed control system and new technologies to reduce friction, delivers real-world fuel economy almost on a par with a front-wheel drive vehicle.

Featuring ‘four-wheel vertical load’ detection to control torque distribution between the front and rear wheels, enhancing traction and grip regardless of the driving scenario, it also significantly reduces overall mechanical loss and contributes to improved fuel economy.

Newly adopted friction-reducing technologies include a rubber damper inside the power take-off unit that greatly reduces fluctuations in input torque sent to the rear-wheel-drive unit, and a new setting that applies a slight difference in the deceleration ratio between the power take-off and rear differential. By quickly adjusting torque distribution only when necessary, the system features positive response and enhanced real-world fuel economy.

The rear differential reduces mechanical loss by adopting ball bearings and the use of low-viscosity oil, along with a design that stores oil in the upper part and supplies just the necessary amount where and when required. Acting in combination, these measures increase the precision of the AWD-control unit while significantly reducing overall mechanical losses.

All-wheel drive can be matched to either a manual or automatic transmission, ensuring anyone can enjoy the benefits of increased traction with their Skyactiv-X Mazda CX-30.